Copied to
clipboard

G = C3xA42order 432 = 24·33

Direct product of C3, A4 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C3xA42, C24:C33, C22:A4:C32, (C23xC6):C32, (C22xA4):C32, C22:1(C32xA4), (A4xC2xC6):3C3, (C2xC6):1(C3xA4), (C3xC22:A4):3C3, SmallGroup(432,750)

Series: Derived Chief Lower central Upper central

C1C24 — C3xA42
C1C22C24C22xA4A42 — C3xA42
C24 — C3xA42
C1C3

Generators and relations for C3xA42
 G = < a,b,c,d,e,f,g | a3=b2=c2=d3=e2=f2=g3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, dbd-1=bc=cb, be=eb, bf=fb, bg=gb, dcd-1=b, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, geg-1=ef=fe, gfg-1=e >

Subgroups: 880 in 158 conjugacy classes, 42 normal (5 characteristic)
C1, C2, C3, C3, C22, C22, C6, C23, C32, A4, A4, C2xC6, C2xC6, C24, C3xC6, C2xA4, C22xC6, C33, C3xA4, C3xA4, C62, C22xA4, C22:A4, C23xC6, C6xA4, C32xA4, A42, A4xC2xC6, C3xC22:A4, C3xA42
Quotients: C1, C3, C32, A4, C33, C3xA4, C32xA4, A42, C3xA42

Smallest permutation representation of C3xA42
On 36 points
Generators in S36
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 15)(2 13)(3 14)(4 8)(5 9)(6 7)(10 18)(11 16)(12 17)(19 29)(20 30)(21 28)(22 27)(23 25)(24 26)(31 36)(32 34)(33 35)
(1 10)(2 11)(3 12)(4 32)(5 33)(6 31)(7 36)(8 34)(9 35)(13 16)(14 17)(15 18)(19 24)(20 22)(21 23)(25 28)(26 29)(27 30)
(1 5 26)(2 6 27)(3 4 25)(7 30 16)(8 28 17)(9 29 18)(10 35 24)(11 36 22)(12 34 23)(13 31 20)(14 32 21)(15 33 19)
(1 10)(2 11)(3 12)(4 34)(5 35)(6 36)(7 31)(8 32)(9 33)(13 16)(14 17)(15 18)(19 29)(20 30)(21 28)(22 27)(23 25)(24 26)
(1 15)(2 13)(3 14)(4 32)(5 33)(6 31)(7 36)(8 34)(9 35)(10 18)(11 16)(12 17)(19 26)(20 27)(21 25)(22 30)(23 28)(24 29)
(1 6 25)(2 4 26)(3 5 27)(7 23 15)(8 24 13)(9 22 14)(10 31 28)(11 32 29)(12 33 30)(16 34 19)(17 35 20)(18 36 21)

G:=sub<Sym(36)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,15)(2,13)(3,14)(4,8)(5,9)(6,7)(10,18)(11,16)(12,17)(19,29)(20,30)(21,28)(22,27)(23,25)(24,26)(31,36)(32,34)(33,35), (1,10)(2,11)(3,12)(4,32)(5,33)(6,31)(7,36)(8,34)(9,35)(13,16)(14,17)(15,18)(19,24)(20,22)(21,23)(25,28)(26,29)(27,30), (1,5,26)(2,6,27)(3,4,25)(7,30,16)(8,28,17)(9,29,18)(10,35,24)(11,36,22)(12,34,23)(13,31,20)(14,32,21)(15,33,19), (1,10)(2,11)(3,12)(4,34)(5,35)(6,36)(7,31)(8,32)(9,33)(13,16)(14,17)(15,18)(19,29)(20,30)(21,28)(22,27)(23,25)(24,26), (1,15)(2,13)(3,14)(4,32)(5,33)(6,31)(7,36)(8,34)(9,35)(10,18)(11,16)(12,17)(19,26)(20,27)(21,25)(22,30)(23,28)(24,29), (1,6,25)(2,4,26)(3,5,27)(7,23,15)(8,24,13)(9,22,14)(10,31,28)(11,32,29)(12,33,30)(16,34,19)(17,35,20)(18,36,21)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,15)(2,13)(3,14)(4,8)(5,9)(6,7)(10,18)(11,16)(12,17)(19,29)(20,30)(21,28)(22,27)(23,25)(24,26)(31,36)(32,34)(33,35), (1,10)(2,11)(3,12)(4,32)(5,33)(6,31)(7,36)(8,34)(9,35)(13,16)(14,17)(15,18)(19,24)(20,22)(21,23)(25,28)(26,29)(27,30), (1,5,26)(2,6,27)(3,4,25)(7,30,16)(8,28,17)(9,29,18)(10,35,24)(11,36,22)(12,34,23)(13,31,20)(14,32,21)(15,33,19), (1,10)(2,11)(3,12)(4,34)(5,35)(6,36)(7,31)(8,32)(9,33)(13,16)(14,17)(15,18)(19,29)(20,30)(21,28)(22,27)(23,25)(24,26), (1,15)(2,13)(3,14)(4,32)(5,33)(6,31)(7,36)(8,34)(9,35)(10,18)(11,16)(12,17)(19,26)(20,27)(21,25)(22,30)(23,28)(24,29), (1,6,25)(2,4,26)(3,5,27)(7,23,15)(8,24,13)(9,22,14)(10,31,28)(11,32,29)(12,33,30)(16,34,19)(17,35,20)(18,36,21) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,15),(2,13),(3,14),(4,8),(5,9),(6,7),(10,18),(11,16),(12,17),(19,29),(20,30),(21,28),(22,27),(23,25),(24,26),(31,36),(32,34),(33,35)], [(1,10),(2,11),(3,12),(4,32),(5,33),(6,31),(7,36),(8,34),(9,35),(13,16),(14,17),(15,18),(19,24),(20,22),(21,23),(25,28),(26,29),(27,30)], [(1,5,26),(2,6,27),(3,4,25),(7,30,16),(8,28,17),(9,29,18),(10,35,24),(11,36,22),(12,34,23),(13,31,20),(14,32,21),(15,33,19)], [(1,10),(2,11),(3,12),(4,34),(5,35),(6,36),(7,31),(8,32),(9,33),(13,16),(14,17),(15,18),(19,29),(20,30),(21,28),(22,27),(23,25),(24,26)], [(1,15),(2,13),(3,14),(4,32),(5,33),(6,31),(7,36),(8,34),(9,35),(10,18),(11,16),(12,17),(19,26),(20,27),(21,25),(22,30),(23,28),(24,29)], [(1,6,25),(2,4,26),(3,5,27),(7,23,15),(8,24,13),(9,22,14),(10,31,28),(11,32,29),(12,33,30),(16,34,19),(17,35,20),(18,36,21)]])

48 conjugacy classes

class 1 2A2B2C3A3B3C···3N3O···3Z6A6B6C6D6E6F6G···6R
order1222333···33···36666666···6
size1339114···416···1633339912···12

48 irreducible representations

dim111133399
type+++
imageC1C3C3C3A4C3xA4C3xA4A42C3xA42
kernelC3xA42A42A4xC2xC6C3xC22:A4C3xA4A4C2xC6C3C1
# reps11844212412

Matrix representation of C3xA42 in GL6(F7)

200000
020000
002000
000100
000010
000001
,
100000
010000
001000
000666
000001
000010
,
100000
010000
001000
000001
000666
000100
,
200000
020000
002000
000100
000001
000666
,
001000
666000
100000
000100
000010
000001
,
010000
100000
666000
000100
000010
000001
,
400000
004000
333000
000100
000010
000001

G:=sub<GL(6,GF(7))| [2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,6,0,1,0,0,0,6,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,1,0,0,0,0,6,0,0,0,0,1,6,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,6,0,0,0,0,0,6,0,0,0,0,1,6],[0,6,1,0,0,0,0,6,0,0,0,0,1,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,6,0,0,0,1,0,6,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,3,0,0,0,0,0,3,0,0,0,0,4,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C3xA42 in GAP, Magma, Sage, TeX

C_3\times A_4^2
% in TeX

G:=Group("C3xA4^2");
// GroupNames label

G:=SmallGroup(432,750);
// by ID

G=gap.SmallGroup(432,750);
# by ID

G:=PCGroup([7,-3,-3,-3,-2,2,-2,2,766,326,13613,5298]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^3=e^2=f^2=g^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,b*g=g*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<